215 research outputs found

    Development and Validations of a 3-D Numerical Wave Model in Cartesian Grid System Using Level Set Method

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive

    Tensor Network Based Finite-Size Scaling for Two-Dimensional Classical Models

    Full text link
    We propose a scheme to perform tensor network based finite-size scaling analysis for two-dimensional classical models. In the tensor network representation of the partition function, we use higher-order tensor renormalization group (HOTRG) method to coarse grain the weight tensor. The renormalized tensor is then used to construct the approximated transfer matrix of an infinite strip of finite width. By diagonalizing the transfer matrix we obtain the correlation length, the magnetization, and the energy density which are used in finite-size scaling analysis to determine the critical temperature and the critical exponents. As a benchmark we study the two-dimensional classical Ising model. We show that the critical temperature and the critical exponents can be accurately determined. With HOTRG bond dimension D=70D=70, the absolute errors of the critical temperature TcT_c and the critical exponent ν\nu, β\beta are at the order of 107,10510^{-7}, 10^{-5}, 10410^{-4} respectively. Furthermore, the results can be systematically improved by increasing the bond dimension of the HOTRG method. Finally, we study the length scale induced by the finite cut-off in bond dimension and elucidate its physical meaning in this context

    Verifying External Interrupts of Embedded Microprocessor in SoC with on-chip bus

    Get PDF
    Abstract-The microprocessor verification challenge becomes higher in the on-chip bus (OCB) than in the unit-level. Especially for the external interrupts, since they interface with other IP components, they suffer from the complicated bus protocol and IP conflict problems. This paper proposes a automatic method to verify the microprocessor external interrupt behaviors on the OCB. The verification approach is based on the Processor External Interrupt Verification Tool (PEVT) whose simulation environment is direct-connected memory. In this paper, we implement the PEVT-SoC and successfully verify two SoC platforms, one academic microprocessor and one public domain microprocessor. An interesting bug appears that is impossible to be discovered in the memory bus and not easy to be identified on the OCB. The result shows that the PEVT-SoC effectively shortens the verification time regardless of the system complexity and can be easily migrated to different platforms/microprocessors. With little human effort, even an inexperience designer can generate extensive verification cases in a systematic way

    Effects of natto extract on endothelial injury in a rat model

    Get PDF
    Vascular endothelial damage has been found to be associated with thrombus formation, which is considered to be a risk factor for cardiovascular disease. A diet of natto leads to a low prevalence of cardiovascular disease. The aim of the present study was to investigate the effects of natto extract on vascular endothelia damage with exposure to laser irradiation. Endothelial damage both in vitro and in vivo was induced by irradiation of rose bengal using a DPSS green laser. Cell viability was determined by MTS assay, and the intimal thickening was verified by a histological approach. The antioxidant content of natto extract was determined for the free radical scavenging activity. Endothelial cells were injured in the presence of rose bengal irradiated in a dose-dependent manner. Natto extract exhibits high levels of antioxidant activity compared with purified natto kinase. Apoptosis of laser-injured endothelial cells was significantly reduced in the presence of natto extract. Both the natto extract and natto kinase suppressed intimal thickening in rats with endothelial injury. The present findings suggest that natto extract suppresses vessel thickening as a synergic effect attributed to its antioxidant and anti-apoptosis properties

    Integration and Application of a Fiber-Optic Sensing System for Monitoring Debris Flows

    Get PDF
    This study presents an innovative fiber-optic sensing system for monitoring debris flows. The system mainly comprises an interrogator and four fiber Bragg grating accelerometers. The field tests show that signal-to-noise-ratio (SNR) of the fiber-optic sensor is 10 dB higher than that of a geophone. Following confirmation of the reliability of the proposed sensing system, the systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County, Taiwan, for monitoring debris flows. The four accelerometers are installed in series. The systems have detected several debris flows in 2012. The monitored data reveal that the frequency range of the acceleration of ground vibration is 10-150 Hz, which is the same as that of the velocity of ground vibration detected by a sensing system that includes geophones. Because the fiber-optic sensing system is more sensitive than the geophone system, the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations.本研究藉由組合光纖光柵加速度計、解調儀、及其他相關元件,發展一套可偵測土 石流之光纖感測系統。現地測試結果顯示,與目前常用含地聲檢知器的土石流感測系統相較, 本系統所測得地表振動訊號之訊雜比比前者高10 dB。在測試系統量測效能後,將此系統分別 架設於南投縣信義鄉神木村之愛玉子溪及出水溪上。系統中採串連方式配置四個光纖加速度 計,並於2012 年監測到多場土石流。觀測結果顯示,光纖感測系統所測得土石流所造成地表 振動之加速度,與過去地聲檢知器所測得土石流地表振動速度,兩者頻率一樣,均為10–150 Hz。由於光纖光柵加速度計相較於地聲檢知器更為靈敏,因此,除了可應用於偵測土石流外, 也可應用於監測會產生地表振動的其他坡地災害,如:落石及山崩等

    Identification of Novel Susceptibility Loci for Kawasaki Disease in a Han Chinese Population by a Genome-Wide Association Study

    Get PDF
    Kawasaki disease (KD) is an acute systemic vasculitis syndrome that primarily affects infants and young children. Its etiology is unknown; however, epidemiological findings suggest that genetic predisposition underlies disease susceptibility. Taiwan has the third-highest incidence of KD in the world, after Japan and Korea. To investigate novel mechanisms that might predispose individuals to KD, we conducted a genome-wide association study (GWAS) in 250 KD patients and 446 controls in a Han Chinese population residing in Taiwan, and further validated our findings in an independent Han Chinese cohort of 208 cases and 366 controls. The most strongly associated single-nucleotide polymorphisms (SNPs) detected in the joint analysis corresponded to three novel loci. Among these KD-associated SNPs three were close to the COPB2 (coatomer protein complex beta-2 subunit) gene: rs1873668 (p = 9.52×10−5), rs4243399 (p = 9.93×10−5), and rs16849083 (p = 9.93×10−5). We also identified a SNP in the intronic region of the ERAP1 (endoplasmic reticulum amino peptidase 1) gene (rs149481, pbest = 4.61×10−5). Six SNPs (rs17113284, rs8005468, rs10129255, rs2007467, rs10150241, and rs12590667) clustered in an area containing immunoglobulin heavy chain variable regions genes, with pbest-values between 2.08×10−5 and 8.93×10−6, were also identified. This is the first KD GWAS performed in a Han Chinese population. The novel KD candidates we identified have been implicated in T cell receptor signaling, regulation of proinflammatory cytokines, as well as antibody-mediated immune responses. These findings may lead to a better understanding of the underlying molecular pathogenesis of KD

    New Variants and Age Shift to High Fatality Groups Contribute to Severe Successive Waves in the 2009 Influenza Pandemic in Taiwan

    Get PDF
    Past influenza pandemics have been characterized by the signature feature of multiple waves. However, the reasons for multiple waves in a pandemic are not understood. Successive waves in the 2009 influenza pandemic, with a sharp increase in hospitalized and fatal cases, occurred in Taiwan during the winter of 2010. In this study, we sought to discover possible contributors to the multiple waves in this influenza pandemic. We conducted a large-scale analysis of 4703 isolates in an unbiased manner to monitor the emergence, dominance and replacement of various variants. Based on the data from influenza surveillance and epidemic curves of each variant clade, we defined virologically and temporally distinct waves of the 2009 pandemic in Taiwan from May 2009 to April 2011 as waves 1 and 2, an interwave period and wave 3. Except for wave 3, each wave was dominated by one distinct variant. In wave 3, three variants emerged and co-circulated, and formed distinct phylogenetic clades, based on the hemagglutinin (HA) genes and other segments. The severity of influenza was represented as the case fatality ratio (CFR) in the hospitalized cases. The CFRs in waves 1 and 2, the interwave period and wave 3 were 6.4%, 5.1%, 15.2% and 9.8%, respectively. The results highlight the association of virus evolution and variable influenza severity. Further analysis revealed that the major affected groups were shifted in the waves to older individuals, who had higher age-specific CFRs. The successive pandemic waves create challenges for the strategic preparedness of health authorities and make the pandemic uncertain and variable. Our findings indicate that the emergence of new variants and age shift to high fatality groups might contribute potentially to the occurrence of successive severe pandemic waves and offer insights into the adjustment of national responses to mitigate influenza pandemics
    corecore